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Abstract—Biosignal recording and processing systems (BRPSs)
are in high demand for numerous applications such as brain-
machine interfaces, healthcare, and other clinical applications.
However, conventional BRPS can only perform simple operations,
such as filtering and denoising, but cannot perform robust ma-
chine learning-based analyses in real time. This paper proposes
an intelligent BRPS that consists of a signal recording front-
end for biosignal acquisition, control and visualization hub,
and FPGA board for machine learning acceleration. High-speed
Ethernet and PCle interfaces were used to increase the data
transmission rate of the system. Moreover, the integrated acceler-
ator in the FPGA is designed in a single-instruction-multiple-data
(SIMD) mode to perform complex machine learning operations in
parallel to speed up data-processing tasks. The proposed system is
validated for various applications, including EEG-based seizure
prediction with a convolutional neural network (CNN), EMG-
based gesture recognition with a spiking neural network (SNN),
and ECG-based arrhythmia detection with a binary neural
network (BNN). Experimental results reveal that this system
takes 13 ms to process one-second electrophysiological signals at
512 Hz and 32 channels, thus achieving real-time performance.
The proposed BRPS is an open-source and expandable system,
and different machine-learning approaches can be configured for
diverse applications.

Index Terms—Signal Processing System, Biosignal, Graphical
User Interface, AI accelerator, FPGA, Neural Networks

I. INTRODUCTION

Biosignals play a significant role in health monitoring and
disease diagnosis because they provide critical information
about a person’s physiological, pathophysiological, and emo-
tional states. With the emergence of machine learning algo-
rithms, intelligent biosignal processing has become available,
resulting in various sought-after biomedical applications. For
example, Attia et al. proposed a rapid, inexpensive method
based on a convolutional neural network (CNN) to detect
the signature of atrial fibrillation using an electrocardiogram
(ECG) [1]. Borhani et al. adopted a deep-learning-based
electroencephalogram (EEG) method for seizure detection
and obtained excellent results [2]. Ghassemi et al. built an
attention-based hybrid CNN-RNN network to fully utilize the
sequential nature of electromyogram (EMG) signals for hand
gesture recognition [3]. However, the studies mentioned above
cannot be applied to the healthcare market or clinic without a
real-time biosignal processing system.
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Much effort has been devoted to developing real-time elec-
trophysiological signal recording and processing systems. In
2017, Patel et al proposed an open-source software platform
to achieve real-time biosignal acquisition and control in bi-
ological experiments [4]. Although the open-source software
provides good flexibility and allows users to implement cus-
tomized protocols and functions, the system performance dete-
riorates if all processing relies on a general-purpose operating
system and CPU. In 2018, Pirog et al. designed "Multimed”, a
configurable and multi-channel hardware system using FPGA
acceleration to lower signal processing latency for real-time
analysis [5]. However, with hardware description languages,
the flexibility and expandability of the system are greatly lim-
ited. More recently, Erickson et al. proposed a multi-channel
biosystem on gastrointestinal (GI) field for wireless real-time
signal visualization together with an integrated microcontroller
that is well suited for portable, ambulatory applications [6].
However, its application may be limited in the neural and
cardiac fields, where high sampling frequencies(> 500H z)
and high bandwidth streaming are required.

This study proposes an intelligent biosignal recording and
processing system (BRPS), which contains a recording front-
end to acquire various biosignal, a control and visualization
hub based on Python Qt for system control and signal visual-
ization, and a real-time artificial intelligence (AI) processor on
an FPGA development board. The FPGA is flexible and can
be configured for different neural-network algorithms that can
be freely utilized with EEG, EMG, and ECG signals. When
connected to biosignal acquisition devices through TCP/IP,
recording and processing functions allow users to monitor live-
stream biosignals and apply real-time analyses.

The remainder of this paper is organized as follows. Section
Il presents an integrated system overview, together with indi-
vidual descriptions of separate parts of the system. In Section
III, we present our implementation of the system and algorithm
details. This section also presents various applications of this
system to EEG, ECG, and EMG. Finally, the conclusions are
presented in Section IV.

II. SYSTEM DESCRIPTION

A. System Overview

Fig. 1 depicts the architecture of the proposed system.
It consists mainly of a multichannel recording device front-
end, control and visualization hub for system control and



("o Ty T A P YT !
\ Ex6 11 Recording ' [[AT)  Control & FPGA :
1 Signal | | Device | | & Visualization Hub Development Board |
1 TR | , Electrodes I 1 1
| @'g; \ I | 1 Configurations '
: AN 4R sul__ :
| I ~
b e : : : I - :' Visualizer I I
: Lo T I I J —r- :
[ R - TIITIIIZoIoIIIozI A
! 3 |
| ! Control Panels  ~pt---1-'| 9| ||PEPEHPE[—

VR A (= e} ][ !
- I I | £ o Configurations 1 | | = | | [ o0 W oe W o | 1
Y 8 — [Pe [ 7 i
: (I 1 | 9> FPGA Data Driver |
! | 1 1 | ‘E 1
: ;t/ 1 1 1 | 1
| l N I I

| I : : Data Receiver & Preprocessor Processing Element Array | |
' ECG \ J

Fig. 1. The proposed ERPS contains three main components: the Recording Device, the Control and Visualization Hub, and the FPGA Al Accelerator. All
standard system features, such as the visualizer, are implemented as plug-ins. The plug-in is embedded in the main window through which users can control

the plug-in and send instructions to configure FPGA Development board.

monitoring, and Al accelerator implemented on an FPGA
board. The biosignals acquired by the recording device are
transferred to the control and visualization hub via the TCP/IP
protocol. The hub receives real-time biosignals and controls
the communications and settings of the AI accelerator by
uploading different neural-network parameters to the FPGA
board. A high-throughput PCle interface facilitates commu-
nication between the FPGA board and hub, reducing data
transmission latency. A programmable Al accelerator is imple-
mented in the FPGA device, which can perform the operations
of different types of neural networks. The AI accelerator
consists of a two-dimensional (2D) processing element (PE)
array that performs the inner product and pooling operations,
matrix-multiplication, pooling, and other necessary operations
required by neural networks. The 2D PE array performs
operations in a single instruction multiple data (SIMD) mode
to accelerate data processing. The results delivered by the
neural network are fetched and later displayed by the GUI.

B. Recording Device

A BrainVision Recorder (Brain Products GmbH, Germany)
is used as the signal-recording device for the proposed system.
The maximum number of recording channels is 160, with a
recording bandwidth between DC and 7500 Hz.Each recording
channel consists of a high-end amplifier and an analog-to-
digital converter (ADC). The amplifier’s input noise is 2V},
and its common-mode rejection rate is 100 dB. The amplified
signals are digitized by a 24-bit ADC, after which the signals
are transferred to a data processing computer that features a
control and visualization hub.

C. Control and Visualization Hub

Fig. 2 illustrates the structure of the control and visual-
ization hub in the proposed system. It mainly consists of
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Fig. 2. Control and Visualization Hub

3 functional blocks, data receiver and preprocessor, GUI,
and FPGA data driver. To achieve an optimized real-time
performance, multiprocessing and multithread programming
methods are utilized. The three functional blocks operate
through independent processes to handle the acquired biosig-
nal data in a pipeline fashion.

In Process 1, a TCP socket is established between the
data receiver and the signal acquisition device. The receiver
continuously reads the real-time stream from the socket after
the connected device declares the start of transmission. Then,
a real-time filter can be optionally added to the raw data before
it is sent to any other process via the lab streaming layer (LSL)
protocol.

Process 2 mainly entails hosting the graphic user interface
(GUI) to help configure the system, visualizing the signals,
and displaying processing results from the FPGA board. Fig.
3 shows a screenshot of the graphical user interface (GUI).
It is adapted from the App-SigVisualizer with customization
to fit our system. Multiple widgets such as algorithm control
and operation control are added to help download dedicated
network parameters and send commands to the FPGA board.
A child thread hosting an LSL client is defined within Process
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Fig. 3. The layout of the GUI. The Waveform Display visualizes the
live stream of the biosignal with channels separated; The Weight Parameter
Control Panel provides an option for users to select a desired algorithm out
of CNN, SNN and BNN to load the weights; The Operation Control Panel
controls the run/stop of the program and defines the number of channels;
The Feedback Result presents the results after calculation in the FPGA Board
(EEG epilepsy seizure prediction used as an example in the figure)
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Fig. 4. The FPGA architecture of the proposed system. IM: Instruction Mem-
ory; MIPS: Microprocessor without Interlocked Pipelined Stages. According
to different algorithms, the control module can give different instructions to
the FPGA through RTL or HLS to deploy the intended structure.

2 to receive the signal data from Process 1.

Finally, in Process 3, another LSL client is set up, receiving
live biosignal data from Process 1. The FPGA data driver then
selects and forwards the data to the FPGA board via a high-
throughput PCle interface.

D. FPGA Platform

The architecture of the FPGA acceleration board is illus-
trated in Fig. 4. It mainly consists of a PCle interface, data
buffer, control module, and machine learning accelerator. The
data from the PCle interface are automatically stored in the
data buffer, which is implemented with dual-clock SRAM
memory. The control module receives commands from the
PCle interface to control the data exchange process between
the data buffer and the accelerator. The accelerator comprises
an instruction memory (IM), MIPS core, and 2D processing
element (PE) array. The IM stores instructions that control the
operations of both PE and the MIPS core. The instructions are
loaded to the IM before the system starts, and can be refreshed
based on different neural network types, as dictated by the
control hub. The MIPS core fetches the instructions from the
IM and broadcasts them to the PE array to carry out neural
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Fig. 5. Real-time Latency Analysis for 268 Iterations

network operations in a single-instruction multiple-data mode.
Inside each PE, the local memory is used to store the weight
parameters of the neural network. The control hub preloads the
weights before the system starts operating. Arithmetic logic
units (ALUs) that perform multiplication, accumulation, and
activation functions are also integrated. MUX and DEMUX
units are used in the PE to control data communication with
neighboring PEs. All PE operations are controlled by signals
decoded from the instructions.

III. IMPLEMENTATION AND MEASUREMENT
A. Implementation

For the system implementation, a BrainVision product was
adopted as the signal acquisition device for our system. This
involves 24-bit electrophysiological signal recording on 32
channels, with a sampling rate of up to 100 kHz. The control
and visualization hub is implemented using Python on a
Windows 10 PC with an Intel Core i5-7500 CPU and 8G
memory. The FPGA platform adopted in the system is an
Xilinx ALVEO U250 Card with a PCIe Gen 3 interface which
provides an 8.0GT/s bandwidth for the communication with
the PC.Moreover, the FPGA-featured Al accelerator consumes
161,348 LUTs (9.34%), 95,885 FFs (2.78%), and 773.5 kB
BRAMS.

B. Experimental Results

To evaluate the real-time performance of our system, we
measured and analyzed the delay between data acquisition
and visualization for 268 iterations. Fig. 5 depicts the result,
showing an average real-time display latency of approximately
20 ms. Furthermore, to demonstrate the intelligent signal pro-
cessing performance of the proposed system and benchmark
with other works, we evaluated the system with EEG, ECG,
and EMG analysis tasks using the CHB-MIT [8], MIT-BIH
arrhythmia [9], and Nina Pro DB1 [10] datasets, respectively.

First, we implemented the binary convolutional neural
network (BCNN) architecture proposed in [11] to perform
EEG-based seizure prediction. The network architecture is
illustrated in Fig. 6 (a). The network was first trained with
CHB-MIT, and the weight parameters were fully mapped
onto the FPGA through the control and visualization hub.
The measured average processing delay of the FPGA was
13 ms when processing one-second EEG signals at 512 Hz.
An accuracy of 94.26% seizure prediction was achieved. The



TABLE I

PERFORMANCE COMPARISON WITH OTHER OPEN-SOURCE SYSTEMS

Open Ephys [7] RTXI [4] Multimed [5] This work
Processing Latency 20ms 74.8ms 10-20 ms 13ms
Processor PC PC FPGA FPGA
Development Environment JUCE, C++ MATLAB, C++ VHDL Python, C++, Verilog
Supported Algorithms - Preprocessing function SNN CNN, BNN, SNN

Preprocessing function

Compatible Signal Types

Intracellular and Extracellular
electrophysiology, EEG

EMG, Neural Signal

EEG, EMG, ECG
Pancreatic Cells

EEG, EMG, ECG

Closed-loop stimulation

Dynamic-clamp technique

Dectect electrical activity of

Epileptic seizure prediction

Applications of hibpocampus Distorted auditory feedback pancreatic islets Hand gesture recognition
pp pus Investigate feedback-driven tACS | Long term continuous processing | Arrhythmia detection
BCNN CNN SNN IV. CONCLUSION
This paper presents a real-time biosignal recording and pro-
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Fig. 6. Neural network structure of the proposed system. (a) BNN-based
EEG seizure prediction problem, (b) CNN-based EMG gesture recognition
problem, (c) SNN-based ECG arrhythmia detection problem.

CNN architecture shown in Fig. 6 (b) was used for the EMG-
based gesture recognition. We used an 8-bit quantized CNN to
achieve an accuracy of 86.39% for five gesture classification
problems. Spiking CNN architecture shown in Fig. 6 (c)
was implemented on an Al accelerator for the ECG-based
arrhythmia detection. The MIT-BIH arrhythmia dataset was
used for training and evaluation. With the time step set to 8,
four types of arrhythmia can be detected with an accuracy of
84.21%.

Table I shows a comparison between the proposed BRPS
and other open-source systems. With the help of the FPGA-
based acceleration, our experiments indicate that the process-
ing speed is increased compared to other works. In addition,
the control and visualization hub was implemented under
Python environment, which facilitated the training and param-
eter conversion process due to its compatibility with existing
machine learning frameworks such as TensorFlow or PyTorch.
Our system is validated with various machine learning al-
gorithms for different applications without deteriorating the
signal analysis accuracy.

cessing system for various applications. It employs an open-
source and python-based control and visualization hub for
biosignal visualization and system configuration and an FPGA
for machine learning processing acceleration. Experimental
results show that the system achieves low visualization and
processing latency. Various neural network-based biosignal
analyses can be carried out with the proposed system in high
accuracy with real-time performance.
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